Задать вопрос
10 января, 06:33

Периметр прямоугольника равен 62, а диагональ равна 25. Найдите площадь этого прямоугольника

+4
Ответы (1)
  1. 10 января, 07:44
    0
    Сумма двух соседних сторон треугольника равна половине периметра, то есть, 62/2=31. Обозначим соседние стороны треугольника за x и 31-x. Рассмотрим прямоугольный треугольник, состоящий из двух соседних сторон прямоугольника и его диагонали. По теореме Пифагора, x² + (31-x) ²=25², 2x²-62x+961=625, 2x²-62x+336=0, x²-31x+168=0. Решим это квадратное уравнение: D=31²-168*4=289, x1 = (31-17) / 2=7, x2 = (31+17) / 2=24. Значит, стороны прямоугольника равны 7 и 24 (во втором случае 24 и 7, что одно и то же). Площадь прямоугольника равна произведению сторон, то есть, 7*24=168.
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Периметр прямоугольника равен 62, а диагональ равна 25. Найдите площадь этого прямоугольника ...» по предмету 📗 Геометрия. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы