Задать вопрос
27 сентября, 01:54

Перпендикуляр, который проведён из вершины прямоугольника к его диагонали, делит прямой угол в отношении 2 : 1. Вычисли острый угол между диагоналями прямоугольника.

+2
Ответы (1)
  1. 27 сентября, 03:20
    0
    Перпендикуляр, опущенный к диагонали из прямого угла, образует два угла, один из которых составляет 1 часть, а другой - 2 части. В сумме прямой угол составляет 3 части, значит 90:3=30° Это меньший угол. В прямоугольном треугольнике, получившемся при проведении перпендикуляра, находим третий угол между стороной прямоугольника и его диагональю 180 - (30+90) = 60° Его смежный угол равен 90-60=30° В треугольнике, образованном стороной прямоугольника и его диагоналями, углы при основании равны, т. к. он равнобедренный. Угол при вершине этого треугольника равен 180 - (30+30) = 120° Находим искомый острый угол между диагоналями прямоугольника 180-120=60°
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Перпендикуляр, который проведён из вершины прямоугольника к его диагонали, делит прямой угол в отношении 2 : 1. Вычисли острый угол между ...» по предмету 📗 Геометрия. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы