Задать вопрос
23 сентября, 19:39

Дан треугольник АВС со сторонами АВ=4, ВС=5 и АС=6. Доказать, что прямая. проходящая через точку пересечения медиан и центр вписанной окружности, параллельна

стороне ВС.

+5
Ответы (1)
  1. 23 сентября, 20:00
    0
    Расстояние от центра вписанной окружности до BC равно радиусу и равно S/p=2S / (4+5+6) = 2S/15, где S - площадь АВС, а р - его полупериметр.

    Расстояние от точки пересечения медиан до ВС равно h/3=2S/3BC=2S/15, где h - высота треугольника АВС, проведенная к стороне BC. Таким образом, эти расстояния равны. Значит прямая из условия параллельна BC.
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Дан треугольник АВС со сторонами АВ=4, ВС=5 и АС=6. Доказать, что прямая. проходящая через точку пересечения медиан и центр вписанной ...» по предмету 📗 Геометрия. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы