Задать вопрос
23 июня, 11:36

Прямая DE параллельна AC треугольника ABC, отсекает от него треугольник DBE, стороны которого в четыре раза меньше сторон данного треугольника. Найдите площадь ABC, если площадь трапеции равна 30

+1
Ответы (1)
  1. 23 июня, 15:00
    0
    Вообще просто. Так как известно что стороны в четыре раза меньше - тогда получается, что отсечен подобный треугольник с коэффициентом подобия = 1/4. А есть такое замечательное свойство, что высота у подобных треугольников отличается на коэффициент подобия. А так как искомая величина - площадь = основание*высоту/2 то при перемножении коэффициент подобия перемножится и составит 1/16. Таким образом, площадь маленького отсеченного треугольника составит 1/16 от большого. Трапеция при этом - оставшаяся часть = 15/16=30. Отсюда следует, что 1/16 = 2.
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Прямая DE параллельна AC треугольника ABC, отсекает от него треугольник DBE, стороны которого в четыре раза меньше сторон данного ...» по предмету 📗 Геометрия. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы