Задать вопрос
12 июня, 14:15

Как доказать, что трапеция равнобедренная, если её диогонали равны?

+1
Ответы (1)
  1. 12 июня, 16:20
    0
    Через треугольники, образованные диагоналями, у которых основания - боковые стороны трапеции. Так как диагонали равны, то и боковые стороны треугольников между собой равны, а углы при вершине у центра трапеции вертикальные, следовательно по признаку равенства треугольников (две стороны и угол между ними) они равны, а значит основания у них равны, из чего следует, что трапеция равнобедренная.
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Как доказать, что трапеция равнобедренная, если её диогонали равны? ...» по предмету 📗 Геометрия. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы