Задать вопрос
11 мая, 04:28

Катеты прямоугольного треугольника равняются 4 см и 3 см. Найти длину наибольшей стороны подобного ему треугольника, площадь которого равняется 54 см^2

+5
Ответы (1)
  1. 11 мая, 08:13
    0
    Находим площадь маленького треугольника S=1/2*a*b, где a, b - катеты треугольника прямоугольного. S=4*3/2=6 см^2 Отношение площадей подобных треугольников равно коэффициенту подобия (k) в квадрате. 54/6=k^2 = > k=3. наибольшая сторона у прямоугольных треугольников гипотенуза. Гипотенуза маленького треугольника равна 5 (или Пифагорова тройка 3, 4, 5 или находишь по Теореме Пифагора х^2=3^2+4^2 x^2=9+16=25 x=5). Так как коэффициент подобия равен трем, то гипотенуза большего треугольника в 3 раза больше данного нам и равна 3*5=15

    Ответ 15 см
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Катеты прямоугольного треугольника равняются 4 см и 3 см. Найти длину наибольшей стороны подобного ему треугольника, площадь которого ...» по предмету 📗 Геометрия. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы