Задать вопрос
7 сентября, 09:39

Помогите! Дан треугольник со сторонами 5, 12, 13. точка О лежит на большей стороне треугольника и является центром окр., касающейся двух других сторон. Найдите радиус окружности.

+5
Ответы (1)
  1. 7 сентября, 11:58
    0
    Это известный прямоугольный треугольник. Обозначим его АВС. АС=12 основание, угол С=90. ВС=5, гипотенуза АВ=13. Центр О окружности по условию находится на гипотенузе и касается катетов АС и ВС. То есть АС касательная к окружности и перпендикулярна радиусу ОЕ (Е точка касания на АС). Треугольники АВС и АОЕ подобны как прямоугольные с общим острым углом А. Тогда АС/ВС=АЕ/ОЕ. Подставляем 12/5 = (12-R) / R. Отсюда R=3,53.
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Помогите! Дан треугольник со сторонами 5, 12, 13. точка О лежит на большей стороне треугольника и является центром окр., касающейся двух ...» по предмету 📗 Геометрия. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы