Задать вопрос
22 октября, 02:35

Треугольник вписан в окружность так, что сторона АВ является диаметром окружности. Дуга СВ равна 68. Найдите углы треугольника АВС.

+3
Ответы (1)
  1. 22 октября, 04:26
    +1
    Раз AB - диаметр, то треугольник прямоугольный. Таким образом угол С = 90 °.

    Теперь, если обозначить центр описанной окружности О, то треугольники OBC и OCA равнобедренные (с длиной равных бедер равных радиусу окружности). Рассмотрим OBC с известным углом при вершине О равным 68°. Очевидно, его углы при основании будут равны (180° - 68°) / 2 = 112/2 = 56°. То есть один углов (угол CBA или B) в нашем исходном прямоугольном треугольнике равен 56°. А второй угол (при вершине A) будет равен 90° - 56° = 34 °
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Треугольник вписан в окружность так, что сторона АВ является диаметром окружности. Дуга СВ равна 68. Найдите углы треугольника АВС. ...» по предмету 📗 Геометрия. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы