Задать вопрос
15 мая, 23:58

В правильной четырехугольной пирамиде со сторонами основания равна 6 см, а апофема равна 5 см. найти объем пирамиды

+4
Ответы (1)
  1. 16 мая, 02:13
    0
    Обозначим апофему А, сторону основания = а, высоту - Н? sqrt - корень квадратный.

    Объём пирамиды равен V = 1/3 Sосн * H

    S осн = а*а = 6*6 = 36 (кв. см)

    Высота Н = sqrt [A^2 - (0.5a) ^2] = sqrt [5^2 - 3^2] = sqrt [25 - 9] = sqrt [16] = 4 (см)

    Объём:

    V = 1/3 * 36 * 4 = 48 (куб. см)
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «В правильной четырехугольной пирамиде со сторонами основания равна 6 см, а апофема равна 5 см. найти объем пирамиды ...» по предмету 📗 Геометрия. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы