Задать вопрос
5 мая, 06:10

Прямые а и b не лежат в одной плоскости. Через прямую а проведены две плоскости α и β. Докажите что хотя бы одна из этих плоскостей не параллельна прямой b.

+2
Ответы (1)
  1. 5 мая, 07:09
    0
    Если a и b не лежат в одной плоскости, значит прямые скрещивающиеся, через них плоскость нельзя провести.

    Докажем от противного. Пусть обе плоскости, проведенные через а, будут || b. Две плоскости параллельны прямой b, следовательно прямая пересечения а этих двух плоскостей будет параллельна прямой b. Вышло, что b и а параллельные прямые, а по теореме, через две параллельные прямые можно провести плоскость. Получили противоречие условию, так как а и b не должны лежать в одной плоскости.

    Следовательно, одна из плоскостей, проведенная через а, не будет параллельна прямой b.
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Прямые а и b не лежат в одной плоскости. Через прямую а проведены две плоскости α и β. Докажите что хотя бы одна из этих плоскостей не ...» по предмету 📗 Геометрия. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы