Задать вопрос
2 сентября, 00:46

докажите, что если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны

+5
Ответы (1)
  1. 2 сентября, 01:52
    0
    Пусть при пересечении прямых а и с секущей АВ накрест лежащие углы 1 и 2 равны. Если углы 1 и 2 прямые, то прямые а и с перпендикулярны к прямой АВ и следовательно параллельны. Доп. Построен. Провелем перпендикуляр ОН из середины отрезка АВ к прямой а. На прямой с от точки В отложим отрезок ВН1, равный отрезку АН и проведем отрезок ОН1. Треугольники ОНА и ОН1 В равны по двум сторонам и углу между ними. Поэтому угол 3=4 и 5=6. Из равенства 3=4, точки Н, Р и Н1 лежат на одной прямой, а из равенства 5=6 : угол 6 прямой. прямые а и с перпенликулярны к прямой НН1, поэтому они параллельны. : -)
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «докажите, что если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны ...» по предмету 📗 Геометрия. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы