Задать вопрос
14 сентября, 10:54

В основании прямой призмы ромб с диагоналями 30 и 16, а диагональ боковой грани призмы образует с основанием угол 60, найти площадь боковой поверхности

+3
Ответы (1)
  1. 14 сентября, 13:53
    0
    сначала найдем сторону ромба, лежащего в основании по теореме пифагора. Диагонали ромба в точке пересечения делятся пополам и пересекаются под прямым углом. АВ^2=AO^2+OB^2 AB^2=15^2+8^2=225+64=289 AB=17 - сторона ромба

    так как дигональ составляет угол в 60 градусов м призма прямая, то диагональ боковой грани равна 34, лежит напротив угла в 30 градусов. опять по теореме пифагора найдем боковое ребро BB1^2=34^2-17^2 BB1=17 корней из 3. Чтобы найти площадь боковой поверхности надо периметр основания умножить на боковое ребро, так как призма прямая 4*17*17 корней из 3=1156 корней из 3
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «В основании прямой призмы ромб с диагоналями 30 и 16, а диагональ боковой грани призмы образует с основанием угол 60, найти площадь боковой ...» по предмету 📗 Геометрия. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы