Задать вопрос
4 ноября, 10:48

Периметр прямоугольника равен 36 см. Одна из его сторон на 6 см больше другой. Найти расстояние от точки пересечения диагоналей прямоугольника до его сторон.

+1
Ответы (1)
  1. 4 ноября, 12:59
    0
    X+x+x+6+x+6=364x+12=364x=24x=6 малая сторона6+6=12 большая сторонаРассмотрим прямоугольный треугольник, в котором катеты оавны 12 и 6, следовательно по теореме Пифагора найдем гипотенузу, которая является диагональю12 в квадрате+6 в квадрате равно АС в квадратезначит АС=корень из 180 Пусть точка пересечения диагоналей точка ОРассмотрим треугольник АОВ основание 12, а боковые стороны равны корень из 180:2 Равнобедренный треугольникиспустим из вершины к основанию высоту ОН и получим что АН равны 12:2 и найдем по теореме Пифагора эту высоту (180:4-36) все под корнемзначит ОН=3 Ответ: 3
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Периметр прямоугольника равен 36 см. Одна из его сторон на 6 см больше другой. Найти расстояние от точки пересечения диагоналей ...» по предмету 📗 Геометрия. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы