Задать вопрос
28 августа, 04:06

Найдите стороны прямоугольного треугольника, в котором гипотенуза равна 26 см, а отношение катетов 5:12

+2
Ответы (1)
  1. 28 августа, 05:24
    0
    Рассмотрим треугольник АВС, угол В=90 градусов. Пусть Х - коэффициент пропорциональности, тогда АВ=5 Х, ВС=12 Х. По т. Пифагора: АС^2=АВ^2+ВС^2. Тогда - 26^2=25 Х^2+144 Х^2 676=169 Х^2 Х^2=4 Х=2. АВ=5*2=10 см, ВС=12*2=24 см.
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Найдите стороны прямоугольного треугольника, в котором гипотенуза равна 26 см, а отношение катетов 5:12 ...» по предмету 📗 Геометрия. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы