Задать вопрос
22 марта, 12:55

Доказать, что биссектриса внешнего угла при вершине равнобедренного треугольника параллельна его основанию

+5
Ответы (1)
  1. 22 марта, 14:08
    0
    Внешний угол треуг-ка равен сумме внутренних углов треугольника, не смежных с ним. Значит, внешний угол тр-ка равен сумме углов при основании. Сами углы при основании равнобедренного тр-ка равны. Биссектриса внешнего угла делит его на два равных угла, которые в свою очередь равны углам при основании. Получаем две прямы (основание тр-ка и биссектриса внешнего угла) пересечены секущей (боковая сторона тр-ка), причём внутренние накрест лежащие углы равны, значит прямые параллельны.
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Доказать, что биссектриса внешнего угла при вершине равнобедренного треугольника параллельна его основанию ...» по предмету 📗 Геометрия. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы