Задать вопрос
15 мая, 08:42

В треугольнике ABC известно, что AB=7, AC=9, BC=13. В каком отношении, считая от точки C, биссектриса тупого угла A этого треугольника делит его медиану CM

+5
Ответы (1)
  1. 15 мая, 10:03
    0
    Пусть медиана пересекает сторону ВА в точке О. Рассмотрим треугольник АОС АР в нём биссектриса. Точка Р это точка пересечения биссектрисы тупого угла и медианы СО. Биссектриса делит противоположную сторону на отрезки, пропорциональные прилежащим сторонам АО=3,5 АС=9 тогда РС: ОР = АС: АО СР: АО = 9:3,5=90:35=18:7
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «В треугольнике ABC известно, что AB=7, AC=9, BC=13. В каком отношении, считая от точки C, биссектриса тупого угла A этого треугольника ...» по предмету 📗 Геометрия. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы