Задать вопрос
22 октября, 17:16

Медианы треугольника ABC, проведенные из вершин B и C, пересекаются под прямым углом. Найдите длину стороны BC, если длина медианы треугольника, проведенной из вершины A, равна 18 см.

+2
Ответы (1)
  1. 22 октября, 17:48
    0
    Медианы любого треугольника точкой пересечения делятся в отношении 2:1, считая от вершины ...

    т. е. медиана из вершины А точкой пересечения разделится на 12 и 6

    часть медианы, равная 6, - - - это медиана прямоугольного треугольника, проведенная к гипотенузе (ВС), а основание этой медианы (точка, лежащая на ВС) делит гипотенузу пополам и является центром описанной около прямоугольного треугольника окружности, т. е. 6 = ВС/2

    ВС = 12
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Медианы треугольника ABC, проведенные из вершин B и C, пересекаются под прямым углом. Найдите длину стороны BC, если длина медианы ...» по предмету 📗 Геометрия. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы