Задать вопрос
25 марта, 10:47

Диагонали ромба равны 12 см и 16 см. Точка P расположенная вне плоскости ромба удалена от всех сторон ромба на 8 см. Определите расстояние от точки P до плоскости ромба

+3
Ответы (1)
  1. 25 марта, 11:14
    0
    Фигура в описании - пирамида, в основании ромб, у которого диагонали пересекаются под прямым углом. Рассмотрим любой из четырех треугольников в основании пирамиды - они все прямоугольные с катетами по 12:2 = 6 см и 16:2=8 см. соответственно гипотенуза или любая сторона ромба по теореме пифагора равна: корень из 36+64=корень из 100=10 (см).

    Расстояние от точки P до плоскости ромба - это высота пирамиды, а так как Точка P, расположенная вне плоскости ромба удалена от всех сторон ромба на 8 см, то расстояние от точки P до плоскости ромба - высота пирамиды, основание которой находится в центре вписанной окружности в ромб. Проведем отрезок из основания высоты (это центр вписанной окружности) к стороне ромба, этот отрезок перпендикулярен стороне ромба. Найдем высоту пирамиды как катет прямоугольного треугольника по теореме пифагора, где гипотенуза - это апофама пирамиды и по условию равна 8 см. А катет как радиус окружности из соотношений в прямоуг. треугольнике. r^2 = (8^2/10) * (6^2/10) = (8*6/10) ^2, r=4,8, тогда высота = корень из 64-23,04=корень из 40,96 = 6,4 (см).
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Диагонали ромба равны 12 см и 16 см. Точка P расположенная вне плоскости ромба удалена от всех сторон ромба на 8 см. Определите расстояние ...» по предмету 📗 Геометрия. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы