Задать вопрос
5 мая, 09:52

Высата правильной шестиугольной пирамиды = 12 см, а боковое ребро=13 см. Найдите площадь доковой поверхности пирамиды (всё расписать)

+1
Ответы (1)
  1. 5 мая, 11:49
    0
    Я решал исходя из формул то есть;

    тк это правильный шестиугольник то все стороны равны, как и рёбра

    H=12 SA=13 по теореме Пифагора находим R-радиус описанной окружности

    13^2-12^2=5

    r=корень из 3/2*R

    вы наверно спросите почему так, но если рассмотреть правельный треугольник то есть AOB то увидим что r-радиус вписанной окружнойсти шестиугольника находится как r=r+R

    радиусы правельного треугольника, и тогда у нас получается, что апофема будет равна

    5 корней из 3/2^2+12^2=корень из 651/2 числа странные ну что поделаешь ...

    теперь когда у нас известна h (A) - апофема мы можем найти площадь бок поверхности

    Sбок=P*h/2=5*6*корень из 651/2/2=30*корень из 651/4

    Ответ: 30*корень из 651/4

    Удачи;)
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Высата правильной шестиугольной пирамиды = 12 см, а боковое ребро=13 см. Найдите площадь доковой поверхности пирамиды (всё расписать) ...» по предмету 📗 Геометрия. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы