Задать вопрос
16 апреля, 09:16

Отрезки AB и CE пересекаются в их общей середине O. Hа отрезках AC и BE отмечены точки K и M так, что AK равно BM. Доказать, что OK = OM.

+2
Ответы (1)
  1. 16 апреля, 09:35
    0
    По условию АО=СО и ВО=ЕО, как середины отрезков. Углы АОС и ВОЕ равны как вертикальные, следовательно треугольники АОС и ВОЕ равны по двум сторонам и углу между ними.

    Точно так же равны треугольники АОК и ВОМ, поскольку АО=ВО и АК=ВМ по условию, а углы А и В равны как углы равных треугольников, лежащих против равных сторон. Следовательно КО=МО.
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Отрезки AB и CE пересекаются в их общей середине O. Hа отрезках AC и BE отмечены точки K и M так, что AK равно BM. Доказать, что OK = OM. ...» по предмету 📗 Геометрия. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы