Задать вопрос
3 ноября, 01:53

Какая наибольшая площадь может быть у треугольника, если длины двух его медиан равны 12 и 17, а угол между ними равен 150∘?

+2
Ответы (1)
  1. 3 ноября, 03:13
    0
    Треугольник делится тремя медианами на шесть равновеликих треугольников.

    Теорема косинусов:

    Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.

    Итак, одна медиана делится точкой пересечения на отрезки 8 и 4, вторая на 11,3 и 5,7. По теореме косинусов квадрат стороны треугольника, заключенная между двух медиан, равен 64+127,69 + 2*8*11,3*0,866 (так как Cos150° = - 0,866) = 348,24. Тогда сторона равна 18,7. Имеем треугольник, три стороны которого равны 8, 11,3 и 18,7. Площадь такого тр-ка по Герону равна

    √ (19*11*7,7*0,3) = √482,79 = 21,97. Таких площадей в исходном треугольнике три (из шести равновеликих). Значит его площадь равна 65,92.
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Какая наибольшая площадь может быть у треугольника, если длины двух его медиан равны 12 и 17, а угол между ними равен 150∘? ...» по предмету 📗 Геометрия. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы