Задать вопрос
20 ноября, 16:23

Импульс какого тела (тел) не изменяется со временем

+3
Ответы (1)
  1. 20 ноября, 19:13
    0
    Согласно второму закону Ньютона для системы из N частиц:

    d p→ dt = F→, {/displaystyle {/frac {d{/vec {p}}}{dt}}={/vec {F}},}

    где p→ {/displaystyle {/vec {p}}} импульс системы

    p→ = ∑ n=1 N p→ n, {/displaystyle {/vec {p}}=/sum _{n=1}^{N}{/vec {p}}_{n},}

    а F→ {/displaystyle {/vec {F}}} - равнодействующая всех сил, действующих на частицы системы

    F→ = ∑ k=1 N F→ k ext + ∑ n=1 N ∑ m=1 N F→ n, m, m≠n, (1) {/displaystyle {/vec {F}}=/sum _{k=1}^{N} / {/vec {F}}_{k}^{ext}+/sum _{n=1}^{N}/sum _{m=1}^{N} / {/vec {F}}_{n, m},/qquad m/neq n,/qquad / qquad (1) }

    Здесь F→ n, m = {/displaystyle {/vec {F}}_{n, m}=} - равнодействующая сил, действующим на n-ю частицу со стороны m-ой, а F→ k ext {/displaystyle {/vec {F}}_{k}^{ext}} - равнодействующая всех внешних сил, действующих k-ю частицу. Согласно третьему закону Ньютона, силы вида F→ n, m {/displaystyle {/vec {F}}_{n, m}} и F→ m, n {/displaystyle {/vec {F}}_{m, n}} будут равны по абсолютному значению и противоположны по направлению, то есть F→ n, m = - F→ m, n. {/displaystyle {/vec {F}}_{n, m}=-{/vec {F}}_{m, n}.}. Поэтому вторая сумма в правой части выражения (1) будет равна нулю, и получаем, что производная импульса системы по времени равна векторной сумме всех внешних сил, действующих на систему:

    d p→ dt = ∑ k=1 N F→ k ext (2). {/displaystyle {/frac {d{/vec {p}}}{dt}}=/sum _{k=1}^{N} / {/vec {F}}_{k}^{ext}/qquad / qquad (2).}

    Внутренние силы исключаются третьим законом Ньютона.

    Для систем из N частиц, в которых сумма всех внешних сил равна нулю

    ∑ k=1 N F→ k ext = 0, {/displaystyle / sum _{k=1}^{N} / {/vec {F}}_{k}^{ext}=0,}

    или для систем, на частицы которых не действуют внешние силы F→ k ext = 0, {/displaystyle {/vec {F}}_{k}^{ext}=0,} (для всех k от 1 до n), имеем

    d dt ∑ n=1 N p→ n = 0. {/displaystyle / qquad {/frac {d}{dt}}/sum _{n=1}^{N}{/vec {p}}_{n}=0.}

    Как известно, если производная от некоторого выражения равна нулю, то это выражение есть постоянная величина относительно переменной дифференцирования, а значит:

    ∑ n=1 N p→ n = const → {/displaystyle / sum _{n=1}^{N}{/vec {p}}_{n}={/overrightarrow {/mathrm {const} }}/qquad } (постоянный вектор).

    То есть суммарный импульс системы из N частиц, где N любое целое число, есть величина постоянная. При N=1 получаем выражение для одной частицы. Таким образом, следует вывод[1]:

    Если векторная сумма всех внешних сил, действующих на систему, равна нулю, то импульс системы сохраняется, то есть не меняется со временем.
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Импульс какого тела (тел) не изменяется со временем ...» по предмету 📗 Физика. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы