Задать вопрос
12 июня, 01:25

На доске выписали подряд, без запятых, первые 500 членов арифметической прогрессии, в результате чего получился следующий набор чисел 199920152031 ..., где до многоточия выписаны первые три члена данной прогрессии. Какая цифра расположена в полученном наборе 1999-ом месте?

+1
Ответы (1)
  1. 12 июня, 04:27
    0
    Первые три члена арифметической прогрессии будут 1999, 2015, 2031. Соответственно разность арифметической прогрессии будет равна d=2015-1999=16.

    Формула n-го члена арифметической прогрессии:

    a=a₁+d (n-1)

    Тогда для 1999 члена арифметической прогрессии:

    a=1999+16 (1999-1) = 1999+31968=33967
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «На доске выписали подряд, без запятых, первые 500 членов арифметической прогрессии, в результате чего получился следующий набор чисел ...» по предмету 📗 Алгебра. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы