Задать вопрос
1 февраля, 17:28

Докажите что фкнкция F есть первообразная для функции f на указанном промежутке F (x) = 1/2cos2x; f (x) = - sin2x, x∈R Если можно подробным решением

+2
Ответы (1)
  1. 1 февраля, 18:48
    0
    чтобы доказать, что функция F (x) - первообразная для функции f (x), необходимо найти производную функции F (x) и убедиться, что она равна f (x)

    F' (x) = (1/2) * (-sin2x) * 2 = - sin2x = f (x)

    что и требовалось доказать
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Докажите что фкнкция F есть первообразная для функции f на указанном промежутке F (x) = 1/2cos2x; f (x) = - sin2x, x∈R Если можно подробным ...» по предмету 📗 Алгебра. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы