Задать вопрос
30 августа, 03:43

Sin^2 (45+a) - sin^2 (30-a) - sin15cos (15+2a) = sin2a

45,30,15 - градусы

Cos^2 (45-a)

cos^2 (60+a) - cos75sin (75-2a) = sin2a

75,60,45 - градусы

+4
Ответы (1)
  1. 30 августа, 06:37
    0
    1) sin^2 (45+a) - sin^2 (30-a) - sin 15*cos (15+2a) =

    (sin 45*cos a + cos 45*sin a) ^2 - (sin 30*cos a - cos 30*sin a) ^2 -

    - sin 15 * (cos 15*cos 2a - sin 15*sin 2a) =

    = (1/√2*cos a + 1/√2*sin a) ^2 - (1/2*cos a - √3/2*sin a) ^2 -

    - sin 15*cos 15*cos 2a + sin^2 15*sin 2a =

    = 1/2*cos^2 a + 2*1/2*cos a*sin a + 1/2*sin^2 a - 1/4*cos^2 a +

    + 2*√3/4*sin a*cos a - 3/4*sin^2 a - 1/2*sin 30*cos 2a + (1-cos 30) / 2*sin 2a =

    = cos^2 a * (1/2 - 1/4) + sin^2 a * (1/2 - 3/4) + sin 2a * (1/2 + √3/4 + 1/2 - √3/4) -

    - 1/4*cos 2a =

    = 1/4*cos^2 a - 1/4*sin^2 a + sin 2a * (1 + 0) - 1/4*cos 2a = sin 2a

    2) доказывается точно также

    cos^2 (45-a) + cos^2 (60+a) - cos 75*sin (75-2a) =

    = (cos 45*cos a + sin 45*sin a) ^2 + (cos 60*cos a - sin 60*sin a) ^2 -

    - cos (90-15) * sin (90-15-2a) =

    = (1/√2*cos a + 1/√2*sin a) ^2 + (1/2*cos a - √3/2*sin a) ^2 -

    - sin 15*cos (15+2a) =

    = (1/√2*cos a + 1/√2*sin a) ^2 + (1/2*cos a - √3/2*sin a) ^2 -

    - sin 15 * (cos 15*cos 2a - sin 15*sin 2a)

    Этот пример абсолютно совпадает с 1) и тоже равен sin 2a
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Sin^2 (45+a) - sin^2 (30-a) - sin15cos (15+2a) = sin2a 45,30,15 - градусы Cos^2 (45-a) cos^2 (60+a) - cos75sin (75-2a) = sin2a 75,60,45 - ...» по предмету 📗 Алгебра. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы