Задать вопрос
11 сентября, 21:33

Доказать тождество:

1) Sin^2a - sin^2b=sin (a+b) * sin (a-b)

2) tg (pi/4+a/2) - tg (pi/4-a/2) = 2tga

a-альфа b-бета

+5
Ответы (1)
  1. 11 сентября, 23:16
    0
    1) Sin^2a - sin^2b = (sina-sinb) (sina+sinb) = = 2sin (a+b) / 2*cos (a-b) / 2*2sin (a-b) / 2cos (a+b) / 2==2sin (a-b) / 2cos (a-b) / 2*2sin (a+b) / 2cos (a+b) / 2==sin (a-b) sin (a+b) 2) tg (pi/4+a/2) - tg (pi/4-a/2) = sin (pi/2+a) / (1+cos (pi/2+a)) - - sin (pi/2-a) / ((1+cos (pi/2-a)) = = cosa / (1-sina) - cosa / (1+sina) = (cosa+sinacosa-cosa+sinacosa) / (1-sin^2a) = = 2sinacosa/cos^2a=2sina/cosa=2tgaa-альфа b-бета
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Доказать тождество: 1) Sin^2a - sin^2b=sin (a+b) * sin (a-b) 2) tg (pi/4+a/2) - tg (pi/4-a/2) = 2tga a-альфа b-бета ...» по предмету 📗 Алгебра. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы