Задать вопрос
13 июля, 22:11

7 класс. задача с помощью системы уравнений.

два мастера получили за работу 234000 сум. Первый работал 15 дней, а второй-14 дней. Сколько получил в день каждый из них, если известно, чтопервый мастер за 4 дня получил на 22000 сум. больше, чем второй за 3 дня?

+1
Ответы (1)
  1. 14 июля, 00:50
    0
    Пусть первый мастер получает х руб./день, а второй у руб./день,

    тогда первый за 15 дней получил 15 х руб.,

    а второй за 14 дней получил 14 у руб.

    По условию, всего за работу мастерами было получено 23 400 руб.

    Составим первое уравнение: 15 х+14 у=23 400

    Известно, что первый мастер за 4 дня получил на 2 200 р. больше, чем второй за 3 дня. Составим второе уравнение: 4 х-3 у=2 200

    Составим систему двух уравнений с двумя переменными:

    {15x+14y=23 400 |*4

    { 4x-3y=2 200 | * (-15)

    {60x+56y=93 600

    {-60x+45y=-33 000 +

    101y=60 600 |:101

    y=600 (руб.) - получает второй мастер за один день работы

    4 х+3*600=2200

    4 х-1800=2200

    4 х=2200 + 1800

    4 х=4000

    х=4000:4

    х=1000 (руб.) - получает первый мастер за один день работы
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «7 класс. задача с помощью системы уравнений. два мастера получили за работу 234000 сум. Первый работал 15 дней, а второй-14 дней. Сколько ...» по предмету 📗 Алгебра. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы