Задать вопрос
18 мая, 21:00

На доске написано число 2016. Настойчивый одинадцатиклассник Олег пишет последовательность, в которой каждое число равно сумме квадратов предыдущего: 2016, 41, 17, 50, ... Какое число будет стоять в этой последовательности на 2016-м месте?

+4
Ответы (1)
  1. 18 мая, 23:45
    0
    2016, 41, 17, 50, 25, 29, 85, 89, 145, 42, 20, 4, 16, 37, 58, 89, 145, ...

    Поскольку каждый следующий элемент однозначно определяется предыдущим, то как только в последовательности встретится число, которое уже было раньше, последоватеьлность с этого места начнет повторяться. Такой момент наступает на 16-ом элементе: число 89 уже было на 8-м месте. Итак, до начала периодичности записано 7 элементов: 2016, 41, 17, 50, 25, 29, 85, а после этого последовательность из 8 элементов 89, 145, 42, 20, 4, 16, 37, 58 циклически повторяется. Т. к. 2016-7=2009=8*251+1, то после семи первых элементов в 2009 элементов укладывается 251 полный период длиной 8, и поскольку остаток равен 1, то 2016-ый элемент равен первому элементу в периоде, т. е. 89. Ответ: 89.
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «На доске написано число 2016. Настойчивый одинадцатиклассник Олег пишет последовательность, в которой каждое число равно сумме квадратов ...» по предмету 📗 Алгебра. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы