Задать вопрос
6 февраля, 02:05

Вычислите велечину sin^2 x0 где х0 наименьшей положительный корень уравнения 3cos^2 x - 2,5sin2x + 1 = 0. буду благодарен и отмечу как лучший

+5
Ответы (1)
  1. 6 февраля, 04:58
    0
    3cos^2 (x) - 5sin (x) cos (x) + 1=0 |:cos^2 (x)

    3-5tg (x) + 1+tg^2 (x) = 0

    tg^2 (x) - 5tg (x) + 4=0

    tg (x) = b

    b^2-5b+4=0

    D=b^2-4ac = (-5) ^2-4*1*4=25-16=9

    b1 = (-b+sqrtD) / 2a = (5+3) / 2=4

    b2 = (-b-sqrtD) / 2a = (5-3) / 2=1

    tg (x) = 4

    x=arctg4+pi*n, n E Z

    tg (x) = 1

    x=pi/4+pi*k, k E Z

    Наименьший положительный корень: x0=pi/4. Тогда sin^2 (x0) = (1/sqrt2) ^2 = 1/2 = 0.5

    sqrt - корень из

    pi - число пи
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Вычислите велечину sin^2 x0 где х0 наименьшей положительный корень уравнения 3cos^2 x - 2,5sin2x + 1 = 0. буду благодарен и отмечу как ...» по предмету 📗 Алгебра. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы