Задать вопрос
15 июня, 18:42

Найдите точку минимума функции y=x^3-17x^2+40x+3

+3
Ответы (1)
  1. 15 июня, 20:33
    0
    Точка минимума определяется в точке, в которой производная равна нулю и при этом производная меняет знак с минуса на плюс. Производная функции равна 3*x^2 + 34*x+40. квадратное уравнение равно нулю в двух точках: 1,333 и 10. И при этом в точке с x=10 производная меняет знак с "-" на "+". Поэтому точка минимума соответствует точке, в которой x=10.
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Найдите точку минимума функции y=x^3-17x^2+40x+3 ...» по предмету 📗 Алгебра. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы