Задать вопрос
10 января, 20:23

Два ученика независимо друг от друга решают одну задачу. Первый ученик может решить эту задачу с вероятностью 0,8, а второй - 0,9. Найдите вероятность того, что:

1. оба ученика решат эту задачу;

2. ни один из учеников не решит задачу;

3. хотя бы один из учеников решит задачу;

4. только один из учеников решит задачу.

+5
Ответы (2)
  1. 10 января, 21:08
    0
    1) 0.85 2) 0.15 3) 0.85 4) 0.85 как-то так
  2. 10 января, 21:43
    0
    1. оба ученика решат эту задачу

    Эти события независимые, значит вероятность будет равна произведению вероятностей этих событий: 0,8*0,9=0,72

    2. ни один из учеников не решит задачу

    Вероятность того, что оба не решат равна 1-0,72=0,28

    3. хотя бы один из учеников решит задачу

    Вероятность того, что хотя бы один равна 0,8*0,1+0,9*0,2+0,8*0,9=

    =0,08+0,18+0,72=0,98

    4. только один из учеников решит задачу

    0,08*0,18=0,0144
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Два ученика независимо друг от друга решают одну задачу. Первый ученик может решить эту задачу с вероятностью 0,8, а второй - 0,9. Найдите ...» по предмету 📗 Алгебра. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы