Задать вопрос
24 октября, 18:45

Доказать, что любая натуральная степень числа 15 при делении на 7 датё остаток 1

+4
Ответы (1)
  1. 24 октября, 21:23
    0
    Остаток от деления 15 на 7 равен 1, т. к. 15 = 2*7 + 1. Рассмотрим n-ю степень числа 15: 15ⁿ = (2*7 + 1) ⁿ = (2*7 + 1) * (2*7 + 1) * ... * (2*7 + 1). Имеем n множителей вида (2*7 + 1) и видим, что после перемножения последний член суммы всегда будет 1ⁿ = 1. Т. е. остаток 1 будет сохраняться.
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Доказать, что любая натуральная степень числа 15 при делении на 7 датё остаток 1 ...» по предмету 📗 Алгебра. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы