Задать вопрос
29 марта, 06:35

X^6-6*x^4+8*x^2+3=0 помогите, не могу сообразить каким методом решать

+1
Ответы (1)
  1. 29 марта, 09:11
    0
    X⁶ - 6x⁴ + 8x² + 3 = 0

    x² = t

    t³ - 6t² + 8t + 3 = 0

    (t - 3) (t² - 3t - 1) = 0

    t - 3 = 0 = > t₁ = 3

    t² - 3t - 1 = 0

    D = 9 + 4 = 13

    t₂ = (3 + √13) / 2

    t₃ = (3 - √13) / 2

    t₁ = x² = > 3 = x²

    x₁ = √3, x₂ = - √3

    t₂ = x² = > (3 + √13) / 2 = x²

    x₃ = √ (3 + √13) / 2

    x₄ = - √ (3 + √13) / 2

    t₃ = x² = > (3 - √13) / 2 = x²

    √13 > 3, 3 - √13 < 0, но x² ≥ 0,

    корень t₃ не подходит.

    Ответ: x₁ = √3, x₂ = - √3, x₃ = √ (3 + √13) / 2, x₄ = - √ (3 + √13) / 2.
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «X^6-6*x^4+8*x^2+3=0 помогите, не могу сообразить каким методом решать ...» по предмету 📗 Алгебра. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы