Задать вопрос
11 октября, 10:50

Найдите точку максимума функции y=x^3+3x^2+8

+4
Ответы (1)
  1. 11 октября, 13:13
    0
    Находим первую производную функции:

    y' = 3x^2 + 6x

    Приравниваем ее к нулю:

    3x^2 + 6x = 0 / : 3

    x^2 + 2x = 0

    x (x + 2) = 0

    x₁ = - 2

    x₂ = 0

    Найдем вторую производную:

    y'' = 6x + 6

    Вычисляем:

    y'' (- 2) = - 6<0 - значит точка x = - 2 точка максимума функции.

    y'' (0) = 6 >0 - значит точка x = 0 точка минимума функции.
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Найдите точку максимума функции y=x^3+3x^2+8 ...» по предмету 📗 Алгебра. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы