Задать вопрос
25 августа, 06:38

Помогите с решением ... ответ - 1/12

Найдите угловой коэффициент касательной к графику функции y=g (x) в точке с абциссой Хо, если g (x) = 1/x, а Хо=2 √3

+5
Ответы (1)
  1. 25 августа, 10:05
    0
    Нам известен геометрический смысл производной, что производная от графика функции есть тангенс угла наклона его касательной в той или иной точке. Берём производную от g (x). Получаем g' (x) = - 1 / (x^2). Подставляем значение Хо. Получаем g' (2 √3) = - 1 / ((2 √3) ^2) = - 1/12

    Ответ: - 1/12
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Помогите с решением ... ответ - 1/12 Найдите угловой коэффициент касательной к графику функции y=g (x) в точке с абциссой Хо, если g (x) = ...» по предмету 📗 Алгебра. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы