Задать вопрос
13 марта, 11:19

Найти наименьшее число, которое при делении на 2 дает в остатка 1, на 3 - в остатка 2, на 4 - в остатка 3, на 5 - в остатка 4; на 6 - в остатка 5, на 7 - в остатка 6, на 8 - в остатка 7, на 9 - в остатка 8, на 10 - в остатка 9. Помогите, умоляю!

+1
Ответы (1)
  1. 13 марта, 15:14
    0
    Ответ: Легко видеть, что если к искомому числу прибавить единицу, то результат будет делиться без остатка на 2, 3, 4, 5 и 6. Наименьшее число с этим свойством есть 60 (наименьшее общее кратное) и все такие числа содержаться в ряду 60, 120, 180, ... Искомое число делится на 7, значит в указанном ряду нужно найти число, дающее при делении на 7 остаток 1. Этому условию отвечает число 120. Итак, число 119 - наименьшее, решающее задачу.
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Найти наименьшее число, которое при делении на 2 дает в остатка 1, на 3 - в остатка 2, на 4 - в остатка 3, на 5 - в остатка 4; на 6 - в ...» по предмету 📗 Алгебра. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы