Задать вопрос
30 июля, 12:15

Решить дифференциальное уравнение у"*tgx=y'+1, которое допускает понижение порядка

+3
Ответы (1)
  1. 30 июля, 14:23
    0
    у"*tgx=y'+1

    Порядок понижается элементарно, пуcть u = y' тогда

    u'*tgx = u+1

    du / (u+1) = ctgx*dx

    ln (u+1) = ∫ (cos*x dx) / sin x = ∫ d (sin x) / sin x = ln |sin x| + C

    u+1 = C*|sin x|

    y' = C*|sin x| - 1

    Дальше по случаям. Где синус икс положителен

    y' = C*sinx - 1

    y = - C*cos x - x + C1

    Где отрицателен

    y' = - C*sinx - 1

    y = C*cosx - x + C1
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Решить дифференциальное уравнение у"*tgx=y'+1, которое допускает понижение порядка ...» по предмету 📗 Алгебра. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы