Задать вопрос
13 апреля, 22:40

Объясните подробно как решаются такие примеры:

Разложение многочленов на множители с помощью комбинации различных приемов.

1. 81 - (с^2+6 с) ^2

16m^2 - (m-n) ^2

2. 16 - (x^2-2xy+y^2)

4-p^2-2pq-q^2)

3. c^2-d^2+6c+9

r^2-s^2-10s-25

+4
Ответы (1)
  1. 14 апреля, 00:25
    0
    Во всех примерах проверяется ваше умение использовать разность квадратов и умение сворачивать квадратный многочлен в полный квадрат.

    1. 81 - (с^2+6 с) ^2=9^2 - (с^2+6 с) ^2 = (9-с^2-6 с) (9+с^2+6 с) = (9-с^2-6 с) (с+3) ^2

    16m^2 - (m-n) ^2 = (4m) ^2 - (m-n) ^2 = (4m-m+n) (4m+m-n) = (3m+n) (5m-n)

    2. 16 - (x^2-2xy+y^2) = 4^2 - (x-y) ^2 = (4-x+y) (4+x-y)

    4 - (p^2-2pq-q^2) = 2^2 - (p-q) ^2 = (2-p+q) (2+p-q)

    3. c^2-d^2+6c+9 = (c+3) ^2-d^2 = (c+3-d) (c+3+d)

    r^2-s^2-10s-25=r^2 - (s^2+10s+25) = r^2 - (s+5) ^2 = (r+s+5) (r-s-5)
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Объясните подробно как решаются такие примеры: Разложение многочленов на множители с помощью комбинации различных приемов. 1. 81 - (с^2+6 ...» по предмету 📗 Алгебра. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы