Задать вопрос
21 августа, 17:39

Доказать метод математической индукции *

1^3+2^3 + ... + n^3 = (n (n+1) ^2) / 2

+5
Ответы (1)
  1. 21 августа, 19:25
    0
    Предположим что верно для n верно для n+1 (n+1) (n+2) ^2/2

    (n (n+1) ^2) / 2 + (n+1) ^3 = (n+1) ((n+1) ^2/2 + (n+1) ^2) = (n+1) (n+2) ^2/2 ято и требовалось
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Доказать метод математической индукции * 1^3+2^3 + ... + n^3 = (n (n+1) ^2) / 2 ...» по предмету 📗 Алгебра. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы