Задать вопрос
10 июля, 08:10

Решить уравнение: sin^4 2x + cos^4 2x = 5/8

В ответе указать (в градусах) число корней на промежутке [0; 180] градусов.

+4
Ответы (1)
  1. 10 июля, 11:55
    0
    (1-сos4x) ²/4 + (1+cos4x) ²/4=5/8

    1-2cos4x+cos²4x+1+2cos4x+cos²4x=5/2

    2+2cos²4x=5/2

    2cos²4x=1/2

    2 * (1+cos8x) / 2=1/2

    2 (1+cos8x) = 1

    1+cos8x=1/2

    cos4x=-1/2

    4x=-2π/3+2πk U 4x=2π/3+2πk

    x=-π/6+πk/2 U x=π/6+πk/2

    0≤-π/6+πk/2≤π U 0≤π/6+πk/2≤π

    0≤-1+3k≤6 U 0≤1+3k≤6

    1≤3k≤7 U - 1≤3k≤5

    1/3≤k≤7/3 U - 1/3≤k≤5/3

    k=1⇒x=-π/6+π/2=π/3

    k=2⇒x=-π/6+π=5π/6

    k=0⇒x=π/6

    k=1⇒x=π/6+π/2=2π/3

    Ответ 4 корня
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Решить уравнение: sin^4 2x + cos^4 2x = 5/8 В ответе указать (в градусах) число корней на промежутке [0; 180] градусов. ...» по предмету 📗 Алгебра. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы