Задать вопрос
25 декабря, 09:53

В прямоугольный треугольник вписана окружность, диаметр которой 16 см. Найдите периметр треугольника, если гипотенуза его ровна 52 см. Варианты ответов 1) 84 см 2) 112 см 3) 120 см 4) 136 см

+4
Ответы (1)
  1. 25 декабря, 12:57
    0
    АВ = 52 см

    диаметр = 16 см, тогда радиус = 16/2 = 8 см

    Р (АВС) = АВ+ВС+АС

    Радиус вписанной окружности в прямоугольный треугольник равен:

    r = (ВС+АС-АВ) / 2, с - у нас известно, это - 52 см, и радиус вписанной окружности - 8 см. Из формулы найдём:

    ВС+АС=8*2+52,

    ВС+АС=68 см

    Нам известна гипотенуза и две стороны, сумма которых - 68 см. Значит, периметр равен: 68+52=120 см.
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «В прямоугольный треугольник вписана окружность, диаметр которой 16 см. Найдите периметр треугольника, если гипотенуза его ровна 52 см. ...» по предмету 📗 Алгебра. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы