Задать вопрос
1 июля, 19:16

найдите наименьшее значение функции y=5^ (x^2+12x+38)

+2
Ответы (1)
  1. 1 июля, 19:29
    0
    5^f (x) - монотонно возрастающая функция (относительно f (x)), минимум там же, где и у f (x)

    x^2+12x+38 = (x^2+12x+36) + 2 = (x+6) ^2+2 - минимум в - 6, равен 2.

    Тогда у 5^ (x^2+12x+38) минимум при x = - 6; равен 5^2 = 25.
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «найдите наименьшее значение функции y=5^ (x^2+12x+38) ...» по предмету 📗 Алгебра. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы