Задать вопрос
29 июля, 22:14

2cos^2 * 2x + cos2x + cos6x = 1

+1
Ответы (1)
  1. 30 июля, 01:12
    0
    Ответ: x = pi/4, 3pi/4, 5pi/4, 7pi/4, pi/6, pi/3, 2pi/3, 5pi/6, 7pi/6, 4pi/3, 5pi/3, 11pi/6 2*cos (x) ^2 - 1 + cos (2x) + cos (6x) = 0

    2cos (2x) + cos (6x) = 0

    здесь используем формулу cos (3u) = 4cos (u) ^3 - 3cos (u)

    где u = 2x 2cos (2x) + 4cos (2x) ^3 - 3cos (2x) = 0

    4cos (2x) ^3 - cos (2x) = 0 cos (2x) * (4cos (2x) ^2 - 1) = 0 получаем cos (2x) = 0 = = > x = pi/4, 3pi/4, 5pi/4, 7pi/4 или 4cos (2x) ^2 = 1 cos (2x) = + - 1/2 = = > x = pi/6, pi/3, 2pi/3, 5pi/6, 7pi/6, 4pi/3, 5pi/3, 11pi/6[/tex]
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «2cos^2 * 2x + cos2x + cos6x = 1 ...» по предмету 📗 Алгебра. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы