Задать вопрос
9 августа, 10:38

Вычислить s - площадь плоской фигуры ограниченной заданными кривыми у = х^2, y=4x-3

+3
Ответы (1)
  1. 9 августа, 14:10
    0
    Решение

    Найдём пределы интегрирования:

    x∧2 = 4x - 3

    x∧2 - 4x + 3 = 0

    x1 = 1, x2 = 3

    Интеграл от 1 до 4 (4x - 3 - x∧2) dx = [ (4x∧2) / 2 - 3x - (x∧3) / 3] = подставляем пределы интегрирования = 2-3-1/3-32+12+48/3 = 16/3

    Ответ: 16/3 (кв. ед)
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Вычислить s - площадь плоской фигуры ограниченной заданными кривыми у = х^2, y=4x-3 ...» по предмету 📗 Алгебра. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы