Задать вопрос
28 октября, 14:54

Имеет ли действительные корни уравнение х^4-6 х^2+10=0

+1
Ответы (2)
  1. 28 октября, 16:09
    0
    X^2=t

    t^2-6t+10=0

    D=36-40=-4

    D<0

    уравнение корней не имеет т. к дискриминант меньше нуля
  2. 28 октября, 16:53
    0
    Сделаем замену x^2=y

    y^2-6y+10

    D=6^2-40=-4<0

    Действительных корней нет, но есть другие корни

    y = (6+√-4) / 2 = (6+i√4) / 2 = (6+2i) / 2=3+i

    y=3-i

    x=√y

    x=√ (3+i)

    x=√ (3-i)
Знаете ответ на вопрос?
Не уверены в ответе?
Правильный ответ на вопрос 👍 «Имеет ли действительные корни уравнение х^4-6 х^2+10=0 ...» по предмету 📗 Алгебра. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант - оцените ответы на похожие вопросы. Но если вдруг и это не помогло - задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!
Искать готовые ответы