С5 помогите решением!!пжл - Форум


Корейская косметика
С5 помогите решением!!пжл
  • maxxximmm1
    June 2010 +1 -1
    Сообщений: 40
    при каких а , наименьшее значение функции f(x)=2ax+lx^2-6х+5l, меньше 1 ....ПЛЗ !!!!!!
  • maxxximmm1
    June 2010 +1 -1
    Сообщений: 40
    кто уверен в своем решении выложите
  • wdtnjxtr
    June 2010 +1 -1
    Сообщений: 2
    Я рассмотрела 2 случая раскрытия модуля...
    1)f(x)=х^2+2ax-6x+5 - это парабола ветвями вверх, след. х, который найдем это минимум
    f '(x)=2x+2a-6 ; x=(6-2a)/2 ; Подставляем в функцию вообщем... и пишем, что она < 1
    У меня там получилось, что корней нет...
    2)А тут парабола ветвями вниз получается, если модуль раскрывать с минусом.. и я написала типо, что минимума не будет. будет максимум тут...
    и в ответе, что нет таких а


    Но я не знаю правильно или нет =((
  • VictorshVictorsh
    June 2010 +1 -1
    Сообщений: 13
    maxxximmm I Извините, что поздно, но только сейчас увидел Вашу просьбу.
    Трехчлен в модульных скобках обращается в ноль при х = 1 и х = 5,
    f(1)=2a, f(5) = 10a, составим систему 2a<1 и 10a<1 , следовательно a<0.1
    Это ,если коротко. Проверил затем на компьютерной модели - всё путём! Удачи!
  • VictorshVictorsh
    June 2010 +1 -1
    Сообщений: 13
    maxxximmm I Извините, что поздно, но только сейчас увидел Вашу просьбу.
    Трехчлен в модульных скобках обращается в ноль при х = 1 и х = 5,
    f(1)=2a, f(5) = 10a, составим систему 2a<1 и 10a<1 , следовательно a<0.1
    Это ,если коротко. Проверил затем на компьютерной модели - всё путём! Удачи!
  • Fatimof
    June 2010 +1 -1
    Сообщений: 2
    Кто-нибудь сможет решить такое с5? тут в условии не понятно, почему нужно искать максимум? Парабола ветвями вверх...

    "Найдите все значения а, при каждом из которых функция f(x)=x^2-|x-a^2|-9x имеет хотя бы одну точку максимума."
  • AlekseyS
    June 2010 +1 -1
    Сообщений: 2
    http://ru.wikipedia.org/wiki/%D0%AD%D0%BA%D1%81%D1%82%D1%80%D0%B5%D0%BC%D1%83%D0%BC
    читаем, что такое эскстремум, потом говорим, что такого не может быть. Вас же не просят найти МАКСИМАЛЬНОЕ значение функции на всей области определения.
  • VictorshVictorsh
    June 2010 +1 -1
    Сообщений: 13
    Ув. Fatimof! У меня есть свое решение аналогичного задания. Но в двух словах его не объяснить. Могу выслать его лично. Мой e-mail: interaktiv-2010@yandex.ru
    Кстати, вышлю и всем другим желающим
  • paincake
    June 2010 +1 -1
    Сообщений: 23
    2AlekseyS
    во-первых, статью в википедии может написать ко угодно, и это не коим образом не может служить аргументом. как же заебали олени, вечно ссылающиеся на нее.
    во-вторых, в той же википедии написано, что в точке экстремума производная равно нулю. это условие соблюдается?
  • lavrikk
    June 2010 +1 -1
    Сообщений: 18
    Я уже писал где-то тут, что в точке экстремума производная вообще может не существовать, как, например, у модуля или у данной функции в точке максимума.
  • russell
    June 2010 +1 -1
    Сообщений: 3
    Fatimof,
    Точка максимума это тоже самое что и точка локального максимума. Не путайте с максимальным значением которого в данном случае не существует!
    При раскрытии модуля получаются 2 параболы. Их точки вершины 4 и 5. Так вот а^2 должо принадлежать от 4 до 5. Тогда точко максимума будет точко стыка парабол! То есть а=(2;5^0.5)
  • fcliverpool24
    June 2010 +1 -1
    Сообщений: 23
    Ребят, кто-нибудь может написать решения для с5(любое из европейской части России).Или хотя бы алгоритм)
    Главное-2 точки максимума!Заранее спасибо)
  • zte91
    June 2010 +1 -1
    Сообщений: 220
    21 балл. Сколько это в первичных - ?
  • marisamari
    June 2010 +1 -1
    Сообщений: 1
    pomogite, pojaluista! C5!
    f(x)=x^2-3|x-a^2|-5x
  • torrichelli
    June 2010 +1 -1
    Сообщений: 3
    итак у нас два случая:
    1)ƒ(х)=x^2-3(x-a^2)-5x=x^2-8x+a^2=(x-4)^2+a^2-16
    Отсюда видно, что при a=0 и x=4 выражение (1) принимает минимальное значение равное ƒ(х)=-16.
    2)ƒ(х)=x^2-3*(-1)(x-a^2)-5x=x^2-3*(a^2-x)-5x=x^2-2x-3a^2=(x-1)^2-(3a^2+1)
    Отсюда видно, чтот при a≠0 (a->±∞) и x=1 выражение (2) принимает минимальное значение.
  • torrichelli
    June 2010 +1 -1
    Сообщений: 3
    а забыл!
    в первом случае модуль раскрывался так: x≥a^2, так как 4>0, то минимальное значение ƒ(х)=-16.
    во втором случае: x≤a^2, следовательно a≥1, так как x=1
    Таким образом:
    1≤a^2<4
    1≤│a│<2
    -2 < a ≤ -1
    1 ≤ a < 2
    Функция ƒ(х) принимает минимальные значения при
    -2 < a ≤ -1; 1 ≤ a < 2 лежащие в промежутке ƒ(х)∊[-4; -16]

    P.S. Первый раз в жизни решаю задание с параметром.
  • Murka777Murka777
    January 2011 +1 -1
    Сообщений: 52
    я вообще не пойму как их решать((((
    есть алгоритм по которому нужно решать?

    напишите пожалуйста!!
  • SegamotivSegamotiv
    January 2011 +1 -1
    Сообщений: 327
    Murka777, скачай книгу (выложить не смогу т.к. в инете через телефон сижу): ЕГЭ 2011. Математика. Задача C5. Задачи с параметром. Авторы Козко А.И. и др. Под редакцией А.Л. Семенова и И.В. Ященко. Обложка сиреневая такая. Там расписаны все основные типы задач C5, плюс довольно подробные их решения с теорией. Мне очень понравилось, все довольно понятно) у них кстати по всем заданиям части C такие книжки есть тоже довольно удачные)
  • SegamotivSegamotiv
    January 2011 +1 -1
    Сообщений: 327
    Murka777, ещё можешь посмотреть книжку А.Г. Корнякова - Математика ЕГЭ 2010(за 2011 ещё не видел, но должна выйти). Задания C5. Там тоже представлены методы решения всех типов задач с параметрами которые есть в ЕГЭ. Можно скачать с сайта alexlarin.narod.ru в архиве с материалами за 2010 год. У этого автора также есть и пособия по решению заданий от C1 до C6, они тоже не плохие)
  • ZODLEB
    March 2011 +1 -1
    Сообщений: 24

    Fatimof Кто-нибудь сможет решить такое с5? тут в условии не понятно, почему нужно искать максимум? Парабола ветвями вверх...

    "Найдите все значения а, при каждом из которых функция f(x)=x^2-|x-a^2|-9x имеет хотя бы одну точку максимума."

  • ZODLEB
    March 2011 +1 -1
    Сообщений: 24

    maxxximmm1 при каких а , наименьшее значение функции f(x)=2ax+lx^2-6х+5l, меньше 1 ....ПЛЗ !!!!!!

  • delpaNzdelpaNz
    March 2011 +1 -1
    Сообщений: 400

    ZODLEB ZODLEB

  • ZODLEB
    March 2011 +1 -1
    Сообщений: 24
    увлекся походу. очепятка). Хотя, надо посмотреть, может это новый приказ Департамента образования, а мы не знаем)

    название книги:
    Единый государственный экзамен. Математика. Типовые экзаменационные варианты

    http://imglink.ru/show-image.php?id=96dacbd6acb405ed24bdaedfbf396b7e
    http://imglink.ru/show-image.php?id=d0b38d6390c2eb47aa77181ebab04c90

    в столице брал за 215 руб, но книга того стоит ..
  • MapkaMapka
    March 2011 +1 -1
    Сообщений: 878
    у нас продавали в школе по 100 рублей)) и она не высшего класса. там куча опечаток не только в ответах,но и в самих заданиях..к сожалению..
  • Igorek1Igorek1
    March 2011 +1 -1
    Сообщений: 131
    сегодня был в книжном выпустили толстые книги по основным предметам подготовка к егэ, автора не помню((, но они синие такие....
  • Murka777Murka777
    April 2011 +1 -1
    Сообщений: 52
    Segamotiv спасибо)
  • picadorpicador
    April 2011 +1 -1
    Сообщений: 10


    Igorek1 сегодня был в книжном выпустили толстые книги по основным предметам подготовка к егэ, автора не помню((, но они синие такие....

  • 711265711265
    April 2011 +1 -1
    Сообщений: 69
    В топку эти книжки, они не учат - только психику колечат! Лучше взять Амелькина и Жафярова - это няшно ^^
  • ZODLEB
    April 2011 +1 -1
    Сообщений: 24

    Mapka у нас продавали в школе по 100 рублей)) и она не высшего класса. там куча опечаток не только в ответах,но и в самих заданиях..к сожалению..

  • envy
    April 2011 +1 -1
    Сообщений: 8

    711265 Лучше взять Амелькина и Жафярова - это няшно ^^

  • stella1597
    April 2011 +1 -1
    Сообщений: 20
    http://www.alleng.ru/d/math/math530.htm
    здесь можно скачать Амелькина Рабцевича параметры
    или Горнштейна и Полонского:
    http://mehanika.3dn.ru/load/zadachi_s_parametrami_gornshtejn_p_i_polonskij_v_b_jakir_m_s_skachat_besplatno/22-1-0-3694
  • milanasss
    April 2011 +1 -1
    Сообщений: 120
    спасибо!
  • olesyafox93olesyafox93
    April 2011 +1 -1
    Сообщений: 4
    классная тема. спасибо)
    много полезного почерпнула)
  • qweas
    April 2011 +1 -1
    Сообщений: 24
    система:
    ax-y=1+a
    9x-ay=3-a

    все значения параметра а, при котором система имеет хотя бы одно решение удовлетворяющее условию x*y>0
  • l00ol
    April 2011 +1 -1
    Сообщений: 30
    вот неплохой сборничек
    http://vvolsch15mathem.ucoz.ru/load/0-0-0-82-20
  • ranfullege
    November 2011 +1 -1
    Сообщений: 16
    Для тех, кто хочет решать задачи с параметрами с нуля, советую данное пособие http://ifolder.ru/10621550
  • Rosenberg
    May 2012 +1 -1
    Сообщений: 14
    При каких значениях параметра а, уравнение ax+1=|3-5/x| имеет:
    1) 1 положительный корень
    2) 2 положительных корня
    3) 3 положительных корня
    4) 1 отрицательный корень
    5) 2 отрицательных корня
    6) 3 отрицательных корня

    Можно подробное решение, пожалуйста.
  • delpaNzdelpaNz
    June 2012 +1 -1
    Сообщений: 400
    Rosenberg said:

    При каких значениях параметра а, уравнение ax+1=|3-5/x| имеет:
    1) 1 положительный корень
    2) 2 положительных корня
    3) 3 положительных корня
    4) 1 отрицательный корень
    5) 2 отрицательных корня
    6) 3 отрицательных корня

    Можно подробное решение, пожалуйста.



    на самом деле ничего сложного. Знайте ж ,как раскрывается модул ьи все

  • Inflex56
    June 2012 +1 -1
    Сообщений: 32
    Подняли древнюю тему. А что насчет первого задания?
    Я раскрыл модуль, получилась система из двух функций.
    У первой ветви вверх=> вершина является минимумом. Нашел вершину(3-a), F(x0)<1,
    a=(-беск;3-корень6)и(3+корень6;+беск)
    Вторая функция ветвями вниз=> минимум в любом случае опустится ниже 1. Без заданного отрезка ее нецелесообразно рассматривать.
    Итого ответ получается
    a=(-беск;3-корень6)и(3+корень6;+беск)
    Что скажете?